Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Genome Biol Evol ; 15(12)2023 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-38085037

RESUMEN

Most population genomic tools rely on accurate single nucleotide polymorphism (SNP) calling and filtering to meet their underlying assumptions. However, genomic complexity, resulting from structural variants, paralogous sequences, and repetitive elements, presents significant challenges in assembling contiguous reference genomes. Consequently, short-read resequencing studies can encounter mismapping issues, leading to SNPs that deviate from Mendelian expected patterns of heterozygosity and allelic ratio. In this study, we employed the ngsParalog software to identify such deviant SNPs in whole-genome sequencing (WGS) data with low (1.5×) to intermediate (4.8×) coverage for four species: Arctic Char (Salvelinus alpinus), Lake Whitefish (Coregonus clupeaformis), Atlantic Salmon (Salmo salar), and the American Eel (Anguilla rostrata). The analyses revealed that deviant SNPs accounted for 22% to 62% of all SNPs in salmonid datasets and approximately 11% in the American Eel dataset. These deviant SNPs were particularly concentrated within repetitive elements and genomic regions that had recently undergone rediploidization in salmonids. Additionally, narrow peaks of elevated coverage were ubiquitous along all four reference genomes, encompassed most deviant SNPs, and could be partially associated with transposons and tandem repeats. Including these deviant SNPs in genomic analyses led to highly distorted site frequency spectra, underestimated pairwise FST values, and overestimated nucleotide diversity. Considering the widespread occurrence of deviant SNPs arising from a variety of sources, their important impact in estimating population parameters, and the availability of effective tools to identify them, we propose that excluding deviant SNPs from WGS datasets is required to improve genomic inferences for a wide range of taxa and sequencing depths.


Asunto(s)
Genoma , Salmonidae , Animales , Genómica , Salmonidae/genética , Análisis de Secuencia de ADN , Trucha/genética , Polimorfismo de Nucleótido Simple
2.
Evol Appl ; 16(12): 1872-1888, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38143897

RESUMEN

The American eel (Anguilla rostrata) has long been regarded as a panmictic fish and has been confirmed as such in the northern part of its range. In this paper, we tested for the first time whether panmixia extends to the tropical range of the species. To do so, we first assembled a reference genome (975 Mbp, 19 chromosomes) combining long (PacBio and Nanopore and short (Illumina paired-end) reads technologies to support both this study and future research. To test for population structure, we estimated genotype likelihoods from low-coverage whole-genome sequencing of 460 American eels, collected at 21 sampling sites (in seven geographic regions) ranging from Canada to Trinidad and Tobago. We estimated genetic distance between regions, performed ADMIXTURE-like clustering analysis and multivariate analysis, and found no evidence of population structure, thus confirming that panmixia extends to the tropical range of the species. In addition, two genomic regions with putative inversions were observed, both geographically widespread and present at similar frequencies in all regions. We discuss the implications of lack of genetic population structure for the species. Our results are key for the future genomic research in the American eel and the implementation of conservation measures throughout its geographic range. Additionally, our results can be applied to fisheries management and aquaculture of the species.

3.
Mitochondrial DNA B Resour ; 2(1): 359-360, 2017 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-33473827

RESUMEN

The Cuban gar (Atractosteus tristoechus) is an endemic lepisosteid living in Cuba. Among gars, this species is one of the most threatened and has the smallest natural distribution range. Lepisosteids are air-breathing fishes belonging to the Holostean, a basal non-teleost clade of actinopterygians. Recent studies have indicated that these fishes could be a 'bridge between tetrapods and teleost biomedical models'. Herein, we sequenced and assembled the first complete mitochondrial genome of A. tristoechus. The total length of the mt genome is 16,290 bp, containing the typical 13 protein-coding genes, two ribosomal RNA (rRNA) genes, 22 transfer RNA (tRNA) genes, and a 537 bp length control region.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...